Lecture 9

@ Review

Review: Void pointers

* Void pointer — points to any data type:
int x; void *px=&x;/ * implicit castto (void X ¥
float f; void *pf =&f;

* Cannot be dereferenced directly; void pointers must be
cast prior to dereferencing:

printf ("$d $f\n", Xint *)px, X float X)pf);

Review: Function pointers

* Functions not variables, but also reside in memory (i.e.
have an address) — we can take a pointer to a function

* Function pointer declaration:
int (*cmp)(void % void *X;

* Can be treated like any other pointer
* No need to use & operator (but you can)
* Similarly, no need to use * operator (but you can)

Review: Function pointers

int strcmp_wrapper (void * pa, void * pb) {
return strcmp ((const char *)pa, (const char *)pb);

}

* Can assign to a function pointer:
int (*¥p)(void % void) = strcmp_wrapper; Or
int (*¥p)(void % void K = &strcmp_wrapper;
* Can call from function pointer: (strl and str2 are
strings)
int ret =fp(str1, str2); or
int ret =(Mp)(str1, str2);

Review: Hash tables

* Hash table (or hash map): array of linked lists for storing
and accessing data efficiently

* Each element associated with a key (can be an integer,
string, or other type)

* Hash function computes hash value from key (and table
size); hash value represents index into array

* Multiple elements can have same hash value — results in
collision; elements are chained in linked list

6.087 Lecture 9 — January 22, 2010

@ Using External Libraries
® Symbols and Linkage
¢ Static vs. Dynamic Linkage
° Linking External Libraries
® Symbol Resolution Issues

Symbols and libraries

* External libraries provide a wealth of functionality —
example: C standard library

* Programs access libraries’ functions and variables via
identifiers known as symbols

* Header file declarations/prototypes mapped to symbols at
compile time

* Symbols linked to definitions in external libraries during
linking

* Our own program produces symbols, too

Functions and variables as symbols

* Consider the simple hello world program written below:
#include <stdio .h>
const char msg[] = "Hello, world.";
int main (void) {
puts (msg);
return 0;

}

* What variables and functions are declared globally?

Functions and variables as symbols

* Consider the simple hello world program written below:

#include <stdio .h>
const char msg[] = "Hello, world.";

int main (void) {
puts (msg);
return O;

}

* What variables and functions are declared globally?
msg, main (), puts (), othersin stdio.h

Functions and variables as symbols

* Let’s compile, but not link, the file hello.c to create hello.o:
prompt% gcc -Wall -c hello.c -o hello.o

* —c: compile, but do not link hello.c; result will compile the
code into machine instructions but not make the program
executable

* addresses for lines of code and static and global variables
not yet assigned

* need to perform link step on hello.o (using gcc or 1d) to
assign memory to each symbol

* linking resolves symbols defined elsewhere (like the C
standard library) and makes the code executable

Functions and variables as symbols

Let’s look at the symbols in the compiled file hello.o:
prompt% nm hello.o
Output:
0000000000000000 T main
0000000000000000 R msg
U puts
T’ — (text) code; 'R’ — read-only memory; U’ -undefined
symbol

Addresses all zero before linking; symbols not allocated
memory yet

Undefined symbols are defined externally, resolved during
linking

Functions and variables as symbols

* Why aren’t symbols listed for other declarations in
stdio.h?

* Compiler doesn’t bother creating symbols for unused
function prototypes (saves space)

* What happens when we link?
prompt% gcc —-Wall hello.o -o hello

* Memory allocated for defined symbols
* Undefined symbols located in external libraries (like 1ibc
for C standard library)

Functions and variables as symbols

* Let’s look at the symbols now:
prompt% nm hello

* Output:
(other default symbols)

0000000000400524 T main
000000000040062¢c R msg
U puts@@GLIBC_2.2.5
* Addresses for static (allocated at compile time) symbols
* Symbol put s located in shared library GLIBC_2.2.5 (GNU
C standard library)
* Shared symbol put s not assigned memory until run time

10

Static and dynamic linkage

* Functions, global variables must be allocated memory
before use

* Can allocate at compile time (static) or at run time (shared)
* Advantages/disadvantages to both

* Symbols in same file, other . o files, or static libraries
(archives, . a files) — static linkage

* Symbols in shared libraries (. so files) — dynamic linkage

* gcc links against shared libraries by default, can force
static linkage using -static flag

11

Static linkage

* What happens if we statically link against the library?
prompt% gcc -Wall —-static hello.o -o hello

* Our executable now contains the symbolputs:

00000000004014c0 W puts
0000000000400304 T main

000000000046cd04 R msg

* 'W’: linked to another defined symbol

12

Static linkage

* Atlink time, statically linked symbols added to executable
* Results in much larger executable file (static — 688K,
dynamic — 10K)

Resulting executable does not depend on locating external
library files at run time

To use newer version of library, have to recompile

13

Dynamic linkage

* Dynamic linkage occurs at run-time

* During compile, linker just looks for symbol in external
shared libraries

* Shared library symbols loaded as part of program startup
(before main ())
* Requires external library to define symbol exactly as
expected from header file declaration
* changing function in shared library can break your program
* version information used to minimize this problem
* reason why common libraries like 1ibc rarely modify or
remove functions, even broken ones like gets ()

14

Linking external libraries

Programs linked against C standard library by default

To link against library 1ibnamespec. so or
libnamespec.a, use compiler flag —~1namespecto link
against library

Library must be in library path (standard library directories
+ directories specified using -L directory compiler flag
Use -static for force static linkage

This is enough for static linkage; library code will be added
to resulting executable

15

Loading shared libraries

* Shared library located during compile-time linkage, but
needs to be located again during run-time loading

* Shared libraries located at run-time using linker library
1ld.so

* Whenever shared libraries on system change, need to run
ldconfigto update links seen by 1d. so

* During loading, symbols in dynamic library are allocated
memory and loaded from shared library file

16

Symbol resolution issues

* Symbols can be defined in multiple places
* Suppose we define our ownputs () function
* But, puts () defined in C standard library
* When we call puts (), which one gets used?

19

Symbol resolution issues

* Symbols can be defined in multiple places
* Suppose we define our ownputs () function
* But, puts () defined in C standard library
* When we call puts (), which one gets used?

* Our puts () gets used since ours is static, and puts () in
C standard library not resolved until run-time

* If statically linked against C standard library, linker finds
two puts () definitions and aborts (multiple definitions not
allowed)

19

Symbol resolution issues

How about if we define puts () in a shared library and
attempt to use it within our programs?

Symbols resolved in order they are loaded

Suppose our library containing puts () is 1ibhello. so,
located in a standard library directory (like /usr/1ib),
and we compile our hello.c code against this library:
prompt% gcc —g —-Wall hello.c —-lhello -o
hello

Libraries specified using -1 flag are loaded in order
specified, and before C standard library

Which puts () gets used here?

athena% gcc -g -Wall hello.c -1lc -lhello -o
hello

20

Lecture 9

@ Creating Libraries

21

Creating libraries

* Libraries contain C code like any other program

* Static or shared libraries compiled from (un-linked) object
files created using gcc
* Compiling a static library:
* compile, but do not link source files:
prompt% gcc -g -Wall -c infile.c -o
outfile.o
* collect compiled (unlinked) files into an archive:

athena% ar -rcs libname.a outfilel.o
outfile2.o ...

21

Creating shared libraries

* Compile and do not link files using gcc:
prompt% gcc —-g -Wall —-fPIC -c infile.c -o
outfile.o

* —fPIC option: create position-independent code, since
code will be repositioned during loading

* Link files using 1d to create a shared object (. so) file:
prompt% 1ld -shared -soname libname.so -o
libname.so.version —lc outfilel.o
outfileZ.o ...

* If necessary, add directory to LD_LIBRARY_PATH
environment variable, so 1d. so can find file when loading
at run-time

* Configure 1d. so for new (or changed) library:
prompt% ldconfig -v

22

Lecture 9

@ Data Structures
® B-trees
® Priority Queues

23

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

