Lecture 9

@ Review




Review: Void pointers

* Void pointer — points to any data type:
int x; void *px=&x;/ * implicit castto (void X ¥
float f; void *pf =&f;

* Cannot be dereferenced directly; void pointers must be
cast prior to dereferencing:

printf ( "$d $f\n", Xint *)px, X float X)pf);




Review: Function pointers

* Functions not variables, but also reside in memory (i.e.
have an address) — we can take a pointer to a function

* Function pointer declaration:
int (*cmp)(void % void *X;

* Can be treated like any other pointer
* No need to use & operator (but you can)
* Similarly, no need to use * operator (but you can)




Review: Function pointers

int strcmp_wrapper ( void * pa, void * pb) {
return strcmp (( const char *)pa, (const char *)pb);

}

* Can assign to a function pointer:
int (*¥p )(void % void ) = strcmp_wrapper; Or
int (*¥p )(void % void K = &strcmp_wrapper;
* Can call from function pointer: (strl and str2 are
strings)
int ret =fp(str1, str2); or
int ret =( Mp )(str1, str2);




Review: Hash tables

* Hash table (or hash map): array of linked lists for storing
and accessing data efficiently

* Each element associated with a key (can be an integer,
string, or other type)

* Hash function computes hash value from key (and table
size); hash value represents index into array

* Multiple elements can have same hash value — results in
collision; elements are chained in linked list
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@ Using External Libraries
® Symbols and Linkage
¢ Static vs. Dynamic Linkage
° Linking External Libraries
® Symbol Resolution Issues




Symbols and libraries

* External libraries provide a wealth of functionality —
example: C standard library

* Programs access libraries’ functions and variables via
identifiers known as symbols

* Header file declarations/prototypes mapped to symbols at
compile time

* Symbols linked to definitions in external libraries during
linking

* Our own program produces symbols, too




Functions and variables as symbols

* Consider the simple hello world program written below:
#include <stdio .h>
const char msg[] = "Hello, world.";
int main (void ) {
puts (msg);
return 0;

}

* What variables and functions are declared globally?




Functions and variables as symbols

* Consider the simple hello world program written below:

#include <stdio .h>
const char msg[] = "Hello, world.";

int main (void ) {
puts (msg);
return O;

}

* What variables and functions are declared globally?
msg, main (), puts (), othersin stdio.h




Functions and variables as symbols

* Let’s compile, but not link, the file hello.c to create hello.o:
prompt% gcc -Wall -c hello.c -o hello.o

* —c: compile, but do not link hello.c; result will compile the
code into machine instructions but not make the program
executable

* addresses for lines of code and static and global variables
not yet assigned

* need to perform link step on hello.o (using gcc or 1d) to
assign memory to each symbol

* linking resolves symbols defined elsewhere (like the C
standard library) and makes the code executable




Functions and variables as symbols

Let’s look at the symbols in the compiled file hello.o:
prompt% nm hello.o
Output:
0000000000000000 T main
0000000000000000 R msg
U puts
T’ — (text) code; 'R’ — read-only memory; U’ -undefined
symbol

Addresses all zero before linking; symbols not allocated
memory yet

Undefined symbols are defined externally, resolved during
linking




Functions and variables as symbols

* Why aren’t symbols listed for other declarations in
stdio.h?

* Compiler doesn’t bother creating symbols for unused
function prototypes (saves space)

* What happens when we link?
prompt% gcc —-Wall hello.o -o hello

* Memory allocated for defined symbols
* Undefined symbols located in external libraries (like 1ibc
for C standard library)




Functions and variables as symbols

* Let’s look at the symbols now:
prompt% nm hello

* Output:
(other default symbols)

0000000000400524 T main
000000000040062¢c R msg
U puts@@GLIBC_2.2.5
* Addresses for static (allocated at compile time) symbols
* Symbol put s located in shared library GLIBC_2.2.5 (GNU
C standard library)
* Shared symbol put s not assigned memory until run time
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Static and dynamic linkage

* Functions, global variables must be allocated memory
before use

* Can allocate at compile time (static) or at run time (shared)
* Advantages/disadvantages to both

* Symbols in same file, other . o files, or static libraries
(archives, . a files) — static linkage

* Symbols in shared libraries (. so files) — dynamic linkage

* gcc links against shared libraries by default, can force
static linkage using -static flag
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Static linkage

* What happens if we statically link against the library?
prompt% gcc -Wall —-static hello.o -o hello

* Our executable now contains the symbolputs:

00000000004014c0 W puts
0000000000400304 T main

000000000046cd04 R msg

* 'W’: linked to another defined symbol
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Static linkage

* Atlink time, statically linked symbols added to executable
* Results in much larger executable file (static — 688K,
dynamic — 10K)

Resulting executable does not depend on locating external
library files at run time

To use newer version of library, have to recompile
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Dynamic linkage

* Dynamic linkage occurs at run-time

* During compile, linker just looks for symbol in external
shared libraries

* Shared library symbols loaded as part of program startup
(before main ())
* Requires external library to define symbol exactly as
expected from header file declaration
* changing function in shared library can break your program
* version information used to minimize this problem
* reason why common libraries like 1ibc rarely modify or
remove functions, even broken ones like gets ()

14



Linking external libraries

Programs linked against C standard library by default

To link against library 1ibnamespec. so or
libnamespec.a, use compiler flag —~1namespecto link
against library

Library must be in library path (standard library directories
+ directories specified using -L directory compiler flag
Use -static for force static linkage

This is enough for static linkage; library code will be added
to resulting executable
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Loading shared libraries

* Shared library located during compile-time linkage, but
needs to be located again during run-time loading

* Shared libraries located at run-time using linker library
1ld.so

* Whenever shared libraries on system change, need to run
ldconfigto update links seen by 1d. so

* During loading, symbols in dynamic library are allocated
memory and loaded from shared library file
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Symbol resolution issues

* Symbols can be defined in multiple places
* Suppose we define our ownputs () function
* But, puts () defined in C standard library
* When we call puts (), which one gets used?
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Symbol resolution issues

* Symbols can be defined in multiple places
* Suppose we define our ownputs () function
* But, puts () defined in C standard library
* When we call puts (), which one gets used?

* Our puts () gets used since ours is static, and puts () in
C standard library not resolved until run-time

* If statically linked against C standard library, linker finds
two puts () definitions and aborts (multiple definitions not
allowed)
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Symbol resolution issues

How about if we define puts () in a shared library and
attempt to use it within our programs?

Symbols resolved in order they are loaded

Suppose our library containing puts () is 1ibhello. so,
located in a standard library directory (like /usr/1ib),
and we compile our hello.c code against this library:
prompt% gcc —g —-Wall hello.c —-lhello -o
hello

Libraries specified using -1 flag are loaded in order
specified, and before C standard library

Which puts () gets used here?

athena% gcc -g -Wall hello.c -1lc -lhello -o
hello
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Lecture 9

@ Creating Libraries
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Creating libraries

* Libraries contain C code like any other program

* Static or shared libraries compiled from (un-linked) object
files created using gcc
* Compiling a static library:
* compile, but do not link source files:
prompt% gcc -g -Wall -c infile.c -o
outfile.o
* collect compiled (unlinked) files into an archive:

athena% ar -rcs libname.a outfilel.o
outfile2.o ...
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Creating shared libraries

* Compile and do not link files using gcc:
prompt% gcc —-g -Wall —-fPIC -c infile.c -o
outfile.o

* —fPIC option: create position-independent code, since
code will be repositioned during loading

* Link files using 1d to create a shared object (. so) file:
prompt% 1ld -shared -soname libname.so -o
libname.so.version —lc outfilel.o
outfileZ.o ...

* If necessary, add directory to LD_LIBRARY_PATH
environment variable, so 1d. so can find file when loading
at run-time

* Configure 1d. so for new (or changed) library:
prompt% ldconfig -v
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Lecture 9

@ Data Structures
® B-trees
® Priority Queues
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