Lecture 6

2 Review

Review: pointers

* Pointers: memory address of variables
* '&’ (address of) operator.
* Declaring: int x=10; int *px= &x;
* Dereferencing: *#px=20;
* Pointer arithmetic:
* sizeof ()

* incrementing/decrementing
* absolute value after operation depends on pointer datatype.

Review: string.h

* String copy: strcpy (), strncpy ()
* Comparison: strcmp () , strncmp ()
* Length: strlen()

* Concatenation: strcat ()

* Search: strchr (), strstr ()

Searching and sorting

Searching

* Linear search: O(n)

* Binary search: O(logn) The array has to be sorted first.
Sorting

* Insertion sort: O(n?)

* Quick sort: O(nlogn)

Lecture 6

@ User defined datatype
@ Structures
® Unions
® Bitfields

Structure

Definition: A structure is a collection of related variables (of
possibly different types) grouped together under a single name.
This is a an example of composition—building complex
structures out of simple ones.

Examples:
struct employee
struct point {
{ char fname[100];
int x; char Iname[100];
inty; int age;
s b
/ *Notice the ; a the end */ /*members of different
type ¥

Structure

* struct defines a new datatype.

* The name of the structure is optional.
struct {..} xyy,z;

* The variables declared within a structure are called its
members

* Variables can be declared like any other built in data-type.
struct point ptA;

* Initialization is done by specifying values of every member.
struct point ptA={10,20};

* Assignment operator copies every member of the structure
(be careful with pointers).

Structure (cont.)

More examples:

struct triangle

{

struct point ptA;
struct point ptB;
struct point ptC;
}.

/ *members can be structures */

struct chain_element

{

int data;

struct chain_element *next;
1
/ *members can be

self referential X/

Structure (cont.)

* Individual members can be accessed using ’." operator.
struct point pt={10,20}; int x=pt.x; int y=pt.y;

* If structure is nested, multiple ’.” are required
struct rectangle

{
struct point tl ;/*ktop left ¥
struct point br;/ *bot right ¥
|8
struct rectangle rect ;
int tlx=rect.il.x; / *nested ¥

int tly=rect.il.y;

Structure pointers

* Structures are copied element wise.

* For large structures it is more efficient to pass pointers.
void foo(struct point *pp); struct point pt; foo(&pt)

Members can be accesses from structure pointers using
’->’ operator.

struct point p={10,20};

struct point * pp=&p ;

pp->x =10; /*changes p.x¥

int y=pp->y; /*same as y=p.y ¥

Other ways to access structure members?

struct point p={10,20};

struct point * pp=&p;

(*pp).x = 10; /*changes p.x¥

int y= (*pp).y; /*sameas y=py ¥

why is the () required?

Arrays of structures

* Declaring arrays of int: int x[10];
* Declaring arrays of structure: struct point p[10];
* Initializing arrays of int: int x [4]={0,20,10,2};
* Initializing arrays of structure:
struct point p[3]={0,1,10,20,30,12};
struct point p [3]={{0,1},{10,20},{30,12}};

Size of structures

The size of a structure is greater than or equal to the sum
of the sizes of its members.

Alignment

struct {
char c;
/*padding ¥
int i;

Why is this an important issue? libraries, precompiled files,
SIMD instructions.

Members can be explicitly aligned using compiler
extensions.

__attribute__ ((aligned(x))) /*gcc¥
__declspec((aligned(x))) / ¥MSVC ¥

10

A union is a variable that may hold objects of different
types/sizes in the same memory location. Example:

union data
{
int idata ;
float fdata;
char * sdata ;
} d1,d2,d3;
di1. idata=10;
d1. fdata=3.14F;
d1.sdata= "hello world";

11

Unions (cont.)

* The size of the union variable is equal to the size of its
largest element.

* Important: The compiler does not test if the data is being
read in the correct format.

union data d; d.idata=10; float f=d.fdata;/ *will give junk ¥
* A common solution is to maintain a separate variable.

enum dtype {INT ,FLOAT,CHAR};
struct variant

{

union data d;

enum dtype t;

I

12

Bit fields

Definition: A bit-field is a set of adjacent bits within a single
‘'word’. Example:

struct flag {

unsigned int is_color:1;
unsighed int has_sound:1;
unsigned int is_ntsc:1;

I

* the number after the colons specifies the width in bits.
* each variables should be declared as unsigned int

Bit fields vs. masks

CLR=0x1,SND=0x2,NTSC=0x4; struct flag f;

X|= CLR; x|=SND; x|=NTSC f.has sound=1:f.is color=1;
x&= ~CLR; x&=~SND; f.has sound=0;f.is color=0;
if (x & CLR || x& NTSC) if (f.is_color || f.has sound)

13

Lecture 6

@ Data structure
® Memory allocation
® Linked lists
® Binary trees

14

Digression: dynamic memory allocation

void*malloc(size_t n)
* malloc () allocates blocks of memory

* returns a pointer to unintialized block of memory on
success

* returns NULL on failure.

* the returned value should be cast to appropriate type using
(). int*ip=(int¥malloc(sizeof(int)*00)
void*calloc(size_t n,size_t size)

* allocates an array of n elements each of which is 'size’
bytes.

* initializes memory to 0
void free(void®
* Frees memory allocated my malloc()
* Common error: accessing memory after calling free

14

Linked list

Definition: A dynamic data structure that consists of a
sequence of records where each element contains alink to the
next record in the sequence.
* Linked lists can be singly linked, doubly linked or circular.
For now, we will focus on singlylinked list.
* Every node has a payloadand a link to the next node in
the list.
* The start (head) of the list is maintained in a separate
variable.
* End of the list is indicated by NULL (sentinel).

12 >199 >137 >

15

Linked list

struct node

{
int data;/ *payload ¥

struct node * next;

1

struct node * head;/ *beginning ¥

Linked list vs. arrays

linked-list | array
size dynamic | fixed
indexing | O(n) o)
inserting | O(1) O(n)
deleting | O(1) O(n)

16

Linked list

Creating new element:

struct node * nalloc (int
{
struct node * p=(struct
if (p!=NULL)
{
p->data=data ;
p->next=NULL;
}

return p;

data)

node *X) malloc (sizeof (node)) ;

17

Linked list

Adding elements to front:

struct node * addfront (struct node * head, int data)
{
struct node * p= nalloc (data);
if (p==NULL) return head;
p->next=head ;
return p;

18

Linked list

Iterating:
for (p=head ; p!=NULL; p=p —>next)
/*do something ¥

for (p=head ; p—>next I=NULL;p=p —>next)
/*do something ¥

19

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

