Lecture 3

2 Review

Review: Definitions

* Variable -name/reference to a stored value (usually in
memory)

* Data type -determines the size of a variable in memory,
what values it can take on, what operations are allowed

* Operator -an operation performed using 1-3 variables

* Expression -combination of literal values/variables and
operators/functions

Review: Data types

* Various sizes (char, short, long, float, double)

* Numeric types - signed/unsigned

* Implementation -little or big endian

* Careful mixing and converting (casting) types

Review: Operators

* Unary, binary, ternary (1-3 arguments)

* Arithmetic operators, relational operators, binary (bitwise
and logical) operators, assignment operators, etc.

* Conditional expressions
* Order of evaluation (precedence, direction)

Lecture 3

@ Blocks and Compound Statements

Blocks and compound statements

* A simple statement ends in a semicolon:
z = foo(x+y);

* Consider the multiple statements:
temp = Xx+y;
z = foo(temp);

* Curly braces — combine into compound statement/block

Blocks

* Block can substitute for simple statement
* Compiled as a single unit
* Variables can be declared inside

{
int temp = x+y;
z = foo(temp);

}

* Block can be empty {}
* No semicolon at end

Nested blocks

* Blocks nested inside each other
{

int temp = x+y;
z = foo(temp);
{
float temp2 = x3*y;
z += bar(temp2);
}
}

Lecture 3

@ Control Flow
® Conditional Statements
® Loops

Control conditions

* Unlike C++ or Java, no booleantype (in C89/C90)
* in C99, bool type available (use stdbool.h)

* Condition is an expression (or series of expressions)
e.g.n<3 orx<yl| z<y

* Expression is non-zero = condition true
* Expression must be numeric (or a pointer)

const char str[] = "some text";
if (str) /% string is not null ¥
return 0;

Conditional statements

* The if statement
* The switch statement

The if statement

if (x%2)
y += X/2;

* Evaluate condition
if (x %2==0)

* If true, evaluate inner statement
y +=X/2;

* Otherwise, do nothing

The e1se keyword

if (x%2== 0)
y += X/2;

y += (x+1)/2;

* Optional

* Execute statement if condition is false
y += (x+1)/2;

Either inner statement may be block

10

The else if keyword

if (x%2== 0)
y += X/2;
else if (x%4 == 1)
y += 2%¥((x+3)/4);
else
y += (x+1)/2;

* Additional alternative control paths

Conditions evaluated in order until one is met; inner
statement then executed

If multiple conditions true, only first executed
Equivalent to nested i £ statements

11

Nesting i f statements

if (X%4 == 0)
if (x%2 == 0)
y = 2
else
y = 1;

To which 1 £ statement does the e1se keyword belong?

12

Nesting i f statements

To associate el se with outer if statement: use braces

if (x%4== 0) {
if (x%2== 0)
y = 2
} else
y =1

13

The switch statement

* Alternative conditional statement

* Integer (or character) variable as input

* Considers cases for value of variable
switch (ch) {

case 'Y’: /% ch ==Y ¥
/* do something ¥
break ;

case 'N’: /% ch == 'N ¥
/* do something else ¥
break ;

default : /* otherwise */
/* do a third thing ¥
break ;

14

Multiple cases

* Compares variable to each case in order

* When match found, starts executing inner code until
break; reached

* Execution “falls through” if break; not included

switch (ch) {

switch (ch) { case 'Y':
case 'Y’: /* do something if
case 'y’ : ch ==Y ¥
/* do something if case 'N’:
ch == 'Y or /* do something if
ch ==y ¥ ch == 'Y or
break ; ch == 'N ¥
} break ;

15

The switch statement

* Contents of switch statement a block
* Case labels: different entry points into block
* Similar to labels used with got o keyword (next lecture. . .)

16

Loop statements

* The while loop

* The for loop

* The do-while loop

* The break and cont inue keywords

17

The while loop

while (/ * condition */)
/% loop body *

* Simplest loop structure — evaluate body as long as
condition is true

* Condition evaluated first, so body may never be executed

18

The for loop

int factorial (int n) {
int i, j =1;

for (i =1; i <=n; i++)
ki

return | ;

}

* The “counting” loop

* Inside parentheses, three expressions, separated by
semicolons:
* Initialization: i=1
* Condition: 1 <= n
* Increment: i++

* Expressions can be empty (condition assumed to be “true”)

19

The for loop

Equivalent to while loop:

int factorial (int n)
int | =1;
int i =1;

jok i
i ++; /% increment

}

return j;

/% initialization
while (i <=n /% condition

*)

*/

{

20

The for loop

* Compound expressions separated by commas
int factorial (int n) {
int i, j;
for (i =1, j =1; i <=n; | & i, i++)

return | ;

}

* Comma: operator with lowest precedence, evaluated
left-to-right; not same as between function arguments

21

The do-while loop

char c;
do {

/% loop body ¥/

puts ("Keep going? (y/n) ");
¢ = getchar () ;

/* other processing ¥

} while (¢ == "y’ && /% other conditions X);

* Differs from while loop — condition evaluated after each
iteration

* Body executed at least once
* Note semicolon at end

22

The break keyword

* Sometimes want to terminate a loop early

* break; exits innermost loop or switch statement to exit
early

* Consider the modification of the do-while example:

char c;
do {
/% loop body ¥
puts ("Keep going? (y/n) ");
¢ = getchar();
it (c = 'y")
break ;
/* other processing ¥
} while (/ * other conditions X);

23

The cont inue keyword

* Use to skip an iteration

* continue; skips rest of innermost loop body, jumping to loop
condition

* Example:
#define min(a,b) (@) < (b) ? (@) : (b))

int ged(int a, int b) {

int i, ret = 1, minval = min(a,b);
for (i = 2; i <= minval; i++) {
if (@%i) /% i not divisor of a ¥
continue ;
if (b%i == 0) /* i is divisor of both a and b *
ret = i;
}
return ret;

24

Lecture 3

@ Functions

25

Functions

* Already seen some functions, includingmain ():

int main (void) {
/% do stuff ¥
return 0; /% success ¥

}

* Basic syntax of functions explained in Lecture 1
* How to write a program using functions?

25

Divide and conquer

* Conceptualize how a program can be broken into smaller
parts

Let’s design a program to solve linear Diophantine
equation (ax + by= ¢, y: integers):
get a, b, ¢ from command line
compute g = gcd(a,b)
if (¢ is not a multiple of the gcd)
no solutions exist; exit
run Extended Euclidean algorithm on a, b
rescale x and y output by (c/g)
print solution

* Extended Euclidean algorithm: finds integers X, y s.t.

ax+ by= gcd(ap).

26

Computing the gcd

* Compute the gcd using the Euclidean algorithm:

int gcd(int a, int b) {
while (b) { /* if a<b, performs swap ¥
int temp =b;
b = a%b;
a= temp;

}

return a;

}

* Algorithm relies on gcd(ap) = gcd(ba modb),for natural
numbers a>b .

[Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. 3rd ed. Addison-Wesley, 1997.]

© Addison Wesley. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

27

Extended Euclidean algorithm

Pseudocode for Extended Euclidean algorithm:
Initialize state variables (x,V)
if (a<b)
swap (a, b)
while (b>0) {
compute quotient, remainder
update state variables (x,y)
}

return gcd and state variables (x,y)

[Menezes, A. J., et al. Handbook of Applied Cryptography. CRC Press, 1996.]

© CRC Press. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

28

Returning multiple values

* Extended Euclidean algorithm returns gcd, and two other
state variables, x and y

* Functions only return (up to) one value

* Solution: use global variables
* Declare variables for other outputs outside the function

* variables declared outside of a function block are globals
* persist throughout life of program
* can be accessed/modified in any function

29

Divide and conquer

* Break down problem into simpler sub-problems
* Consider iteration and recursion
* How can we implement gcd(a,b) recursively?

* Minimize transfer of state between functions
* Writing pseudocode first can help

30

6.087 Lecture 3 — January 13, 2010

@ Modular Programming

31

Programming modules in C

* C programs do not need to be monolithic
* Module: interface and implementation
* interface: header files
* implementation: auxilliary source/object files
* Same concept carries over to external libraries (next
week. . .)

31

The Euclid module

* Euclid’s algorithms useful in many contexts

* Would like to include functionality in many programs
* Solution: make a module for Euclid’s algorithms

* Need to write header file (. h) and source file (. c)

32

The source: cuclid.c

Implement gcd () in euclid.c:

/* The gcd() function *
int ged(int a, int b) {
while (b) { /* if a<b, performs swap *
int temp =b;
b = a%b;
a= temp;
}

return a;

}

Extended Euclidean algorithm implemented as
ext_euclid(), alsoin euclid.c

33

The extern keyword

* Need to inform other source files about functions/global
variables ineuclid.c

* For functions: put function prototypes in a header file

* For variables: re-declare the global variable using the
extern keyword in header file

* extern informs compiler that variable defined somewhere
else

* Enables access/modifying of global variable from other
source files

34

The header: cuclid.h

Header contains prototypes for gcd () and ext_euclid():

/* ensure included only once ¥
#tifndef _ EUCLID H__
ftdefine _ EUCLID H__

/* global variables (declared in euclid.c) X/
extern int x, vy;

/% compute gcd ¥
int gcd (int a, int b);

/* compute g= gcd(a,b) and solve ax+by=g ¥
int ext_euclid(int a, int b);

#endif

35

Using the Euclid module

/% compute g= gcd(a,b) X/
g= gcd(ab);

/* compute x and y using Extended Euclidean
g= ext_euclid(a,b);

* Results in global variables x and y

/% rescale so ax+by = c ¥
grow = c/g;
X %= grow ;
y %= grow;

* Want to be able to callgcd () or ext_euclid () from the
main file diophant.c

* Need to include the header file euclid.h:
#include "euclid.n" (file in ., not search path)

* Then, can call as any other function:

alg .

36

Compiling with the Euclid module

* Just compiling diophant . c is insufficient

* The functions gcd () and ext_euclid () are defined in
euclid. c; this source file needs to be compiled, too

* When compiling the source files, the outputs need to be
linked together into a single output

* One call to gcc can accomplish all this:

prompt% gcc —-g -00 -Wall diophant.c
euclid.c -o diophant.exe

* diophant.exe can be run as usual

37

Lecture 3

@ Variable Scope
@ Static Variables
® Register Variables

38

Variable scope

* scope — the region in which a variable is valid

* Many cases, corresponds to block with variable’s
declaration

* Variables declared outside of a function have global scope
* Function definitions also have scope

38

An example

What is the scope of each variable in this example?
int nmax= 20;

/* The main() function X/
int main (int argc, char *%argv) /% entry point
{
int a=0, b=1, c, n;
printf ("%3d: %d\n",1,a);
printf ("%$3d: %d\n",2 ,b);
for (n=3; N<= nmax; n++) {
c =a+b; a=b; b=c;
printf ("%$3d: %d\n",n,c);
1

return 0; /% success ¥

39

Scope and nested declarations

How many lines are printed now?

int nmax= 20;

/* The main() function X/
int main (int argc, char *%argv) /% entry point
{
int a=0, b=1, c, N, nmax =25;
printf ("%3d: %d\n",1,a);
printf ("%$3d: %d\n",2 ,b);
for (n=3; N<= nmax; n++) {
c =a+b; a=b; b=c;
printf ("%$3d: %d\n",n,c);
1

return 0; /% success ¥

40

Static variables

* static keyword has two meanings, depending on where
the static variable is declared

* Qutside a function, static variables/functions only visible
within that file, not globally (cannot be extern’ed)

* Inside a function, static variables:

* are still local to that function
* are initialized only during program initialization
* do not get reinitialized with each function call

static int somePersistentVar = 0;

41

Register variables

During execution, data processed in registers

Explicitly store commonly used data in registers — minimize
load/store overhead

Can explicitly declare certain variables as registers using
register keyword

* must be a simple type (implementation-dependent)

* only local variables and function arguments eligible

* excess/unallowed register declarations ignored, compiled
as regular variables

Registers do not reside in addressed memory; pointer of a
register variable illegal

42

Example

Variable scope example, revisited, withregister variables:

/* The main() function X/
int main (register int argc, register char **argv)
{

register int a=0, b=1, c, n, nmax =20;

printf ("$3d: %d\n",1,a);

printf ("%$3d: %d\n",2 ,b);

for (n=3; N<= nmax; n++) {
c =a+b; a=b; b=c;
printf ("%$3d: %d\n",n,c);

1

return 0; /% success ¥

43

Summary

Topics covered:

* Controlling program flow using conditional statements and
loops

* Dividing a complex program into many simpler
sub-programs using functions and modular programming
techniques

* Variable scope rules and extern, static, and
register variables

44

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

