Lecture 3

2 Review




Review: Definitions

* Variable -name/reference to a stored value (usually in
memory)

* Data type -determines the size of a variable in memory,
what values it can take on, what operations are allowed

* Operator -an operation performed using 1-3 variables

* Expression -combination of literal values/variables and
operators/functions




Review: Data types

* Various sizes (char, short, long, float, double)

* Numeric types - signed/unsigned

* Implementation -little or big endian

* Careful mixing and converting (casting) types




Review: Operators

* Unary, binary, ternary (1-3 arguments)

* Arithmetic operators, relational operators, binary (bitwise
and logical) operators, assignment operators, etc.

* Conditional expressions
* Order of evaluation (precedence, direction)




Lecture 3

@ Blocks and Compound Statements




Blocks and compound statements

* A simple statement ends in a semicolon:
z = foo(x+y);

* Consider the multiple statements:
temp = Xx+y;
z = foo(temp);

* Curly braces — combine into compound statement/block




Blocks

* Block can substitute for simple statement
* Compiled as a single unit
* Variables can be declared inside

{
int temp = x+y;
z = foo(temp);

}

* Block can be empty {}
* No semicolon at end




Nested blocks

* Blocks nested inside each other
{

int temp = x+y;
z = foo(temp);
{
float temp2 = x3*y;
z += bar(temp2);
}
}




Lecture 3

@ Control Flow
® Conditional Statements
® Loops




Control conditions

* Unlike C++ or Java, no booleantype (in C89/C90)
* in C99, bool type available (use stdbool.h)

* Condition is an expression (or series of expressions)
e.g.n<3 orx<yl| z<y

* Expression is non-zero = condition true
* Expression must be numeric (or a pointer)

const char str[] = "some text";
if (str) /% string is not null ¥
return 0;




Conditional statements

* The if statement
* The switch statement




The if statement

if (x%2)
y += X/2;

* Evaluate condition
if (x %2==0)

* If true, evaluate inner statement
y +=X/2;

* Otherwise, do nothing




The e1se keyword

if (x%2== 0)
y += X/2;

y += (x+1)/2;

* Optional

* Execute statement if condition is false
y += (x+1)/2;

Either inner statement may be block
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The else if keyword

if (x%2== 0)
y += X/2;
else if (x%4 == 1)
y += 2%¥((x+3)/4);
else
y += (x+1)/2;

* Additional alternative control paths

Conditions evaluated in order until one is met; inner
statement then executed

If multiple conditions true, only first executed
Equivalent to nested i £ statements
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Nesting i f statements

if (X%4 == 0)
if (x%2 == 0)
y = 2
else
y = 1;

To which 1 £ statement does the e1se keyword belong?
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Nesting i f statements

To associate el se with outer if statement: use braces

if (x%4== 0) {
if (x%2==  0)
y = 2
} else
y =1
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The switch statement

* Alternative conditional statement

* Integer (or character) variable as input

* Considers cases for value of variable
switch (ch) {

case 'Y’: /% ch ==Y ¥
/* do something ¥
break ;

case 'N’: /% ch == 'N ¥
/* do something else ¥
break ;

default : /* otherwise */
/* do a third thing ¥
break ;
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Multiple cases

* Compares variable to each case in order

* When match found, starts executing inner code until
break; reached

* Execution “falls through” if break; not included

switch (ch) {

switch (ch) { case 'Y':
case 'Y’: /* do something if
case 'y’ : ch ==Y ¥
/* do something if case 'N’:
ch == 'Y or /* do something if
ch ==y ¥ ch == 'Y or
break ; ch == 'N ¥
} break ;
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The switch statement

* Contents of switch statement a block
* Case labels: different entry points into block
* Similar to labels used with got o keyword (next lecture. . .)
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Loop statements

* The while loop

* The for loop

* The do-while loop

* The break and cont inue keywords
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The while loop

while (/ * condition */)
/% loop body *

* Simplest loop structure — evaluate body as long as
condition is true

* Condition evaluated first, so body may never be executed
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The for loop

int factorial (  int n) {
int i, j =1;

for (i =1; i <=n; i++)
ki

return | ;

}

* The “counting” loop

* Inside parentheses, three expressions, separated by
semicolons:
* Initialization: i=1
* Condition: 1 <= n
* Increment: i++

* Expressions can be empty (condition assumed to be “true”)
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The for loop

Equivalent to while loop:

int factorial (  int n)
int | =1;
int i =1;

jok i
i ++; /% increment

}

return j;

/% initialization
while (i <=n /% condition

*)

*/

{
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The for loop

* Compound expressions separated by commas
int factorial (  int n) {
int i, j;
for (i =1, j =1; i <=n; | & i, i++)

return | ;

}

* Comma: operator with lowest precedence, evaluated
left-to-right; not same as between function arguments
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The do-while loop

char c;
do {

/% loop body ¥/

puts ( "Keep going? (y/n) ");
¢ = getchar () ;

/* other processing ¥

} while (¢ == "y’ && /% other conditions X );

* Differs from while loop — condition evaluated after each
iteration

* Body executed at least once
* Note semicolon at end
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The break keyword

* Sometimes want to terminate a loop early

* break; exits innermost loop or switch statement to exit
early

* Consider the modification of the do-while example:

char c;
do {
/% loop body ¥
puts ( "Keep going? (y/n) ");
¢ = getchar();
it (c = 'y")
break ;
/* other processing ¥
} while (/ * other conditions X );
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The cont inue keyword

* Use to skip an iteration

* continue; skips rest of innermost loop body, jumping to loop
condition

* Example:
#define min(a,b) (@) < (b) ? (@) : (b))

int ged(int a, int b) {

int i, ret = 1, minval = min(a,b);
for (i = 2; i <= minval; i++) {
if (@%i ) /% i not divisor of a ¥
continue ;
if (b%i == 0) /* i is divisor of both a and b *
ret = i;
}
return ret;
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Lecture 3

@ Functions

25



Functions

* Already seen some functions, includingmain ():

int main (void ) {
/% do stuff ¥
return 0; /% success ¥

}

* Basic syntax of functions explained in Lecture 1
* How to write a program using functions?
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Divide and conquer

* Conceptualize how a program can be broken into smaller
parts

Let’s design a program to solve linear Diophantine
equation (ax + by= ¢, y: integers):
get a, b, ¢ from command line
compute g = gcd(a,b)
if (¢ is not a multiple of the gcd)
no solutions exist; exit
run Extended Euclidean algorithm on a, b
rescale x and y output by (c/g)
print solution

* Extended Euclidean algorithm: finds integers X, y s.t.

ax+ by= gcd(ap).
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Computing the gcd

* Compute the gcd using the Euclidean algorithm:

int gcd(int a, int b) {
while (b) { /* if a<b, performs swap ¥
int temp =b;
b = a%b;
a= temp;

}

return a;

}

* Algorithm relies on gcd(ap) = gcd(ba modb),for natural
numbers a>b .

[Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. 3rd ed. Addison-Wesley, 1997.]

© Addison Wesley. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.
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Extended Euclidean algorithm

Pseudocode for Extended Euclidean algorithm:
Initialize state variables (x,V)
if (a<b)
swap (a, b)
while (b>0) {
compute quotient, remainder
update state variables (x,y)
}

return gcd and state variables (x,y)

[Menezes, A. J., et al. Handbook of Applied Cryptography. CRC Press, 1996.]

© CRC Press. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.
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Returning multiple values

* Extended Euclidean algorithm returns gcd, and two other
state variables, x and y

* Functions only return (up to) one value

* Solution: use global variables
* Declare variables for other outputs outside the function

* variables declared outside of a function block are globals
* persist throughout life of program
* can be accessed/modified in any function
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Divide and conquer

* Break down problem into simpler sub-problems
* Consider iteration and recursion
* How can we implement gcd(a,b) recursively?

* Minimize transfer of state between functions
* Writing pseudocode first can help
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@ Modular Programming
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Programming modules in C

* C programs do not need to be monolithic
* Module: interface and implementation
* interface: header files
* implementation: auxilliary source/object files
* Same concept carries over to external libraries (next
week. . .)
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The Euclid module

* Euclid’s algorithms useful in many contexts

* Would like to include functionality in many programs
* Solution: make a module for Euclid’s algorithms

* Need to write header file (. h) and source file (. c)
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The source: cuclid.c

Implement gcd () in euclid.c:

/* The gcd() function *
int ged(int a, int b) {
while (b) { /* if a<b, performs swap *
int temp =b;
b = a%b;
a= temp;
}

return a;

}

Extended Euclidean algorithm implemented as
ext_euclid(), alsoin euclid.c
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The extern keyword

* Need to inform other source files about functions/global
variables ineuclid.c

* For functions: put function prototypes in a header file

* For variables: re-declare the global variable using the
extern keyword in header file

* extern informs compiler that variable defined somewhere
else

* Enables access/modifying of global variable from other
source files
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The header: cuclid.h

Header contains prototypes for gcd () and ext_euclid():

/* ensure included only once ¥
#tifndef _ EUCLID H__
ftdefine _ EUCLID H__

/* global variables (declared in euclid.c) X/
extern int x, vy;

/% compute gcd ¥
int gcd (int a, int b);

/* compute g= gcd(a,b) and solve ax+by=g ¥
int ext_euclid( int a, int b);

#endif
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Using the Euclid module

/% compute g= gcd(a,b) X/
g= gcd(ab);

/* compute x and y using Extended Euclidean
g= ext_euclid(a,b);

* Results in global variables x and y

/% rescale so ax+by = c ¥
grow = c/g;
X %= grow ;
y %= grow;

* Want to be able to callgcd () or ext_euclid () from the
main file diophant.c

* Need to include the header file euclid.h:
#include "euclid.n" (file in ., not search path)

* Then, can call as any other function:

alg .
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Compiling with the Euclid module

* Just compiling diophant . c is insufficient

* The functions gcd () and ext_euclid () are defined in
euclid. c; this source file needs to be compiled, too

* When compiling the source files, the outputs need to be
linked together into a single output

* One call to gcc can accomplish all this:

prompt% gcc —-g -00 -Wall diophant.c
euclid.c -o diophant.exe

* diophant.exe can be run as usual
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@ Variable Scope
@ Static Variables
® Register Variables
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Variable scope

* scope — the region in which a variable is valid

* Many cases, corresponds to block with variable’s
declaration

* Variables declared outside of a function have global scope
* Function definitions also have scope
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An example

What is the scope of each variable in this example?
int nmax= 20;

/* The main() function X/
int main (int argc, char *%argv) /% entry point
{
int a=0, b=1, c, n;
printf ( "%3d: %d\n",1,a);
printf ( "%$3d: %d\n",2 ,b);
for (n=3; N<= nmax; n++) {
c =a+b; a=b; b=c;
printf (  "%$3d: %d\n",n,c);
1

return 0; /% success ¥
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Scope and nested declarations

How many lines are printed now?

int nmax= 20;

/* The main() function X/
int main (int argc, char *%argv) /% entry point
{
int a=0, b=1, c, N, nmax =25;
printf ( "%3d: %d\n",1,a);
printf ( "%$3d: %d\n",2 ,b);
for (n=3; N<= nmax; n++) {
c =a+b; a=b; b=c;
printf (  "%$3d: %d\n",n,c);
1

return 0; /% success ¥
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Static variables

* static keyword has two meanings, depending on where
the static variable is declared

* Qutside a function, static variables/functions only visible
within that file, not globally (cannot be extern’ed)

* Inside a function, static variables:

* are still local to that function
* are initialized only during program initialization
* do not get reinitialized with each function call

static int somePersistentVar = 0;
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Register variables

During execution, data processed in registers

Explicitly store commonly used data in registers — minimize
load/store overhead

Can explicitly declare certain variables as registers using
register keyword

* must be a simple type (implementation-dependent)

* only local variables and function arguments eligible

* excess/unallowed register declarations ignored, compiled
as regular variables

Registers do not reside in addressed memory; pointer of a
register variable illegal
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Example

Variable scope example, revisited, withregister variables:

/* The main() function X/
int main ( register int argc, register char **argv)
{

register int a=0, b=1, c, n, nmax =20;

printf ( "$3d: %d\n",1,a);

printf ( "%$3d: %d\n",2 ,b);

for (n=3; N<= nmax; n++) {
c =a+b; a=b; b=c;
printf ( "%$3d: %d\n",n,c);

1

return 0; /% success ¥
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Summary

Topics covered:

* Controlling program flow using conditional statements and
loops

* Dividing a complex program into many simpler
sub-programs using functions and modular programming
techniques

* Variable scope rules and extern, static, and
register variables
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