
Intro to C Programming
Summer 2011

Lab 1: Game of Life

Overview
The Game of Life, invented by John Conway in 1970, is an example of a zero-player “game”
known as a cellular automaton. The game consists of a two-dimensional world extending
infinitely in all directions, divided into “cells.” Each cell is either “dead” or “alive” at a
given “generation.” The game consists of a set of rules that describe how the cells evolve
from generation to generation. These rules calculate the state of a cell in the next generation
as a function of the states of its neighboring cells in the current generation. In a 2-D world,
a cell’s neighbors are those 8 cells vertically, horizontally, or diagonally adjacent to that cell.
Conway’s set of rules are summarized as:

1. A live cell with fewer than two live neighbors dies.

2. A live cell with more than three live neighbors also dies.

3. A live cell with exactly two or three live neighbors lives.

4. A dead cell with exactly three live neighbors becomes alive.

In this lab, we will be implementing Conway’s Game of Life, with the minor restriction that
our 2-D world is finite. The neighbors of a cell on the edge of the world that would be beyond
the edge are assumed dead. You can read more about Conway’s Game of Life on Wikipedia
at http://en.wikipedia.org/wiki/Conway’s_Game_of_Life.

Example (the so-called ”glider”):
*

* *
* *

→
*

* *
* *

Part A: Implementing Evolution

In this part, we will focus on implementing the rules needed to evolve the world from one
generation to the next. To assist you, we provide several functions you should use to access
and modify the current and next state of the world. These functions are described in the
header file lifegame.h and implemented in the file lifegame.c. Also, we have provided a
skeleton describing what you need to do for this part in lab1a.c.
Before getting started, you should copy all these files from the class webpage (http://
www.tripp.org/dokuwiki/doku.php?id=intro2c:projects) into your working directory.
When compiling, it will be easier to compile lab1a.c and lifegame.c together to generate
a single executable file (let’s call it lab1a.exe) with all the code in it (otherwise, you’ll get
”undefined reference” errors). Here’s an example command line for compiling this code:

1



prompt% gcc -g -O0 -Wall lab1a.c lifegame.c -o lab1a.exe

prompt%

Start by examining the contents of lifegame.h and lab1a.c. You need to fill in a few lines
in main() and complete the functions next generation(), get next state(x,y), and num
neighbors(x,y). There is no need to modify the files lifegame.h or lifegame.c in this
part.

(a) How will you initialize the world for the Game of Life? Write the appropriate code in
the main() function.

(b) How will you output the final state of the world once all the evolutions are done? Write
the appropriate function call in main().

(c) The main() function calls next generation() for each generation to handle the evolution
process. Your code should set each cell’s state in the next generation according to the
rules specified in the Overview of this handout. Once the states of all the cells have been
set for the next generation, calling finalize evolution() will set the current world state
to the next generation and reset the next generation state. Your code should make use
of the get next state(x,y) function to compute the next state of each cell.

(d) Write the code for get next state(x,y), so the function returns the next state (ALIVE or
DEAD) of the cell at the specified coordinates using the number of live neighbors (returned
by the num neighbors(x,y) function) and the Game of Life rules.

(e) Fill in the function num neighbors(x,y), so it returns the number of live neighbors (cells
vertically, horizontally, or diagonally adjacent) for the specified cell. Since our world is
finite, adjacent cells which are beyond the edge of the world are presumed DEAD.

Now that you’re done, compile and run the program. Feel free to change the definition
of NUM GENERATIONS. But make sure NUM GENERATIONS = 50 is what you use for the final
submission.
Part B: The World in a File

In the first part of this lab, the initial state of the world was hard-coded into lifegame.c

and final state of the world was output to the console. In this part, we will modify the code
so that initial state of the world can be read from a file, and the final state is output to a
file.

First, let’s examine lifegame.c. Notice the functions you need to implement:

initialize world from file(filename) and save world to file(filename).

(a) The first of these, initialize world from file(filename), reads the file specified by
filename and initializes the world from the pattern specified in the file. Basically, the file
is a matrix of characters, ’*’ to specify a live cell, and ’ ’ (space) to specify a dead cell.
The ith character of the jth line (zero-indexed) represents the initial state of the cell

2



located at (i, j). If the line doesn’t contain enough characters or the file doesn’t contain
enough lines, the unspecified cells are presumed dead. Fill in the function to read the
file and initialize the world. Don’t forget to reset all the next generation states to DEAD.
Use appropriate error handling.

(b) The other function, save world to file(filename), saves the final state of the world
to the file filename in the same format as used in the initialization function: the ith
character of the jth line (zero-indexed) represents the state of the cell located at (i, j)
in the world.

(c) Fill in the contents of lab1b.c using the code from Part A (lab1a.c) and modifying to
call these functions. The name of the file to load will be specified in the first command
line argument passed to the executable. If no file is specified, you should default to
initializing the world to the hard-coded default ”glider” pattern. Save the final output
to the file ”world.txt.”

To help you test your code, we’ve provided a couple test files: glider.txt (should match your
output from Part A) and sship.txt (output in sshipout.txt).
To finish, write a brief (1 page max.) lab report describing your experience completing this
lab, what challenges you faced and how you addressed them, and what you learned from
this lab. Turn in a zip file containing all your code (lab1a.c, lab1b.c, lifegame.h, and
lifegame.c), and your lab report, to me via email by the due date.

3


