Intro to C Programming — Lecture 1

@ |ntroduction to C

* Dennis Ritchie—AT&T Bell
Laboratories—1972
* 16-bit DEC PDP-11
Computer (right)
* Widely used today
* extends to newer system
architectures
* efficiency/performance
* low-level access

Features of C

C features:
* Few keywords
* Structures, unions — compound data types
* Pointers — memory, arrays
* External standard library — I/O, other facilities
* Compiles to native code
* Macro preprocessor

Versions of C

Evolved over the years:

* 1972 - C invented

* 1978 — The C Programming Language published; first
specification of language
1989 — C89 standard (known as ANSI C or Standard C)
1990 — ANSI C adopted by ISO, known as C90

1999 — C99 standard

* mostly backward-compatible
* not completely implemented in many compilers

* 2007 — work on new C standard C1X announced
In this course: ANSI/ISO C (C89/C90)

What is C used for?

Systems programming:
* OSes: like Linux, Windows
* microcontrollers: automobiles and airplanes
* embedded processors: phones, ipods, microwaves, etc.
* DSP processors: digital audio and TV systems

C vs. related languages

* More recent derivatives: C++, Objective C, C#
* Influenced: Java, Go, Python (quite different)
* C lacks:

* exceptions

* range-checking
garbage collection
object-oriented programming
polymorphism

* Low-level language = faster code (usually)

Warning: low-level language!

Inherently unsafe:
* No range checking
* Limited type safety at compile time
* No type checking at runtime

Perfectly legal to shoot yourself in the foot.

Handle with care.
* Always run in a debugger like gdb (more later. . .)
* Neverrun as root
* Never run as Administrator

Lecture 1

@ Writing C Programs

Editing C code

. c extension
* Editable directly

File Edit Options Buffers Tools C Help

L EEX&aE «DBMAoME

[z Hinclude <stdio.h
int main() {
printf(“hello\n");
return 0;
}
--:i--- hello.c All L1 (C/1 Abbrev)-----------ccoeooooo oo

$ For information about GNU Emacs and the GNU system, type C-h C-a.

* More later. . .

Compile with GCC

* gcc (included with most Linux distributions): compiler

* Run gcc:

prompt% gcc -Wall infilename.c -0
outfilename

* -Wall enables most compiler warnings
* More complicated forms exist

* multiple source files
* auxiliary directories
* optimization, linking

* Embed debugging info and disable optimization:

prompt% gcc —-g -00 -Wall infilename.c -oO
outfilename

Debuqgging

GMU gdb (GIE) 7,1-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: CGHU GPL version 3 or later <http:ddonu.orgdlicensesdopl.htnl>
This is free software; you are free to change and redistribute it,

There iz NO WARRANTY, to the extent permitted by law, Type "show copying”
atd "show warranty” for details,

This GDB was configured az "i486-1inux-gnu",

For bug reporting instructions, please see:

<https A, ghu, or g sof tuaredgdb bugss L,

Reading symbols from Zhomed justindhello,,,.done,

(gdb) list

1 #include <stdio,h>

2
3 int main) {

4 printf{"hellohn"):

4] return 03

g

(gdb) br 3

Breakpoint 1 at 0x30483ed: file hello.c. line 3,
(gdb) run

Starting progran: Ahomed justindhella

Breskpoint 1, main () at hello,cid

4 printf("hellohn"):
(gdb) [0

Figure: gdb: command-line debugger

10

Using gdb

Some useful commands:

break Ilinenumber — create breakpoint at specified line
break file:linenumber— create breakpoint atline in
file

run — run program

c — continue execution

next — execute next line

step — execute next line or step into function

quit — quit gdb

print expression— print current value of the specified
expression

help command - in-program help

list - list source lines

11

The IDE - all-in-one solution

* Popular IDEs: Eclipse (CDT), Microsoft Visual C++
(Express Edition), KDevelop, Xcode, . . .

* Integrated editor with compiler, debugger
* Very convenient for larger programs

Lecture 1

@ Qur First C Program

15

Hello, UNM-LA students

* In style of “Hello, world!”

* .c file structure

* Syntax: comments, macros, basic declarations
* Themain () function and function structure

* Expressions, order-of-operations

* Basic console I/O (puts (), etc.)

15

Structure of a . c file

/+* Begin with comments about file contents x/

Insert #include statements and preprocessor
definitions

Function prototypes and variable declarations

Define main () function

{
Function body

}

Define other function

{
Function body

}

16

Comments

* Comments: /* this is a simple comment ¥
* Can span multiple lines

/* This comment
spans
multiple lines ¥

* Completely ignored by compiler
* Can appear almost anywhere

/* hello.c ——our first C program

Created by Daniel Weller, 01/11/2010 ¥/

17

The #include macro

* Header files: constants, functions, other declarations

* #include <stdio.h> — read the contents of the header file
stdio.h

* stdio.h: standard I/O functions for console, files
/* hello.c —— our first C program
Created by Daniel Weller, 01/11/2010 ¥

#include <stdio.h> /* basic /O facilities */

18

More about header files

* stdio.h —part of the C Standard Library
* other important header files: ctype.h, math.h,
stdlib.h, string.h, time.h
* For the ugly details: visit http:
//www.unix.org/single_unix_specification/
(registration required)

* Included files must be on include path

* -Idirectory with gcc: specify additional include
directories
* standard include directories assumed by default

* #include "stdio.h" — searches ./ for stdio.h first

19

Declaring variables

* Must declare variables before use

* Variable declaration:
int n;
float phi;
* int -integer data type
* float -floating-point data type

* Many other types (more next lecture. . .

20

Initializing variables

* Uninitialized, variable assumes a default value

* Variables initialized via assignment operator:
n=23;

* Can also initialize at declaration:
float phi=1.6180339887;

* Can declare/initialize multiple variables at once:
int a, b, ¢ =0, d=4;

21

Arithmetic expressions

Suppose x and y are variables
* x+y, x—y, x*y, x/y, x%y: binary arithmetic

* A simple statement:
y = X+3 *x/(y-4);

* Numeric literals like 3 or 4 valid in expressions
* Semicolon ends statement (not newline)

*xX +=y,x —= y,x *x= y,x /=y, x %= y:arithmetic
and assignment

22

Order of operations

* Order of operations:

Operator Evaluation direction
+, — (sign) right-to-left
*, /0% left-to-right
+,- left-to-right
=,+=,-=,%=,/=,%= right-to-left

* Use parentheses to override order of evaluation

23

Order of operations

Assume x =2.0and y =6.0. Evaluate the statement
float z = x+3 *x/(y-4);

1. Evaluate expression in parentheses
float z = x+3 *x/(y-4); = float z = x+3 *x/2.0;

24

Order of operations

Assume x =2.0and y =6.0. Evaluate the statement
float z = x+3 *x/(y-4);

1. Evaluate expression in parentheses
float z = x+3 *x/(y-4); = float z = x+3 *x/2.0;

2. Evaluate multiplies and divides, from left-to-right
float z = x+3 *x/2.0;— float z = x+6.0/2.0; = float z = x+3.0;

24

Order of operations

Assume x =2.0and y =6.0. Evaluate the statement

float z = x+3 *x/(y-4);

1. Evaluate expression in parentheses
float z = x+3 *x/(y-4); = float z = x+3 *x/2.0;

2. Evaluate multiplies and divides, from left-to-right

float z = x+3 *x/2.0;— float z = x+6.0/2.0; = float z = x+3.0;

3. Evaluate addition
float z = x+3.0; = float z=5.0;

24

Order of operations

Assume x =2.0and y =6.0. Evaluate the statement
float z = x+3 *x/(y-4);

1. Evaluate expression in parentheses
float z = x+3 *x/(y-4); = float z = x+3 *x/2.0;

2. Evaluate multiplies and divides, from left-to-right
float z = x+3 *x/2.0;— float z = x+6.0/2.0; = float z = x+3.0;

3. Evaluate addition
float z = x+3.0; = float z=5.0;

4. Perform initialization with assignment
Now, z =5.0.

24

Order of operations

Assume x =2.0and y =6.0. Evaluate the statement
float z = x+3 *x/(y-4);

1. Evaluate expression in parentheses
float z = x+3 *x/(y-4); = float z = x+3 *x/2.0;

2. Evaluate multiplies and divides, from left-to-right
float z = x+3 *x/2.0;— float z = x+6.0/2.0; = float z = x+3.0;

3. Evaluate addition
float z = x+3.0; = float z=5.0;

4. Perform initialization with assignment
Now, z =5.0.

How do | insert parentheses to get z =4.07?

24

Order of operations

Assume x =2.0and y =6.0. Evaluate the statement
float z = x+3 *x/(y-4);

1. Evaluate expression in parentheses
float z = x+3 *x/(y-4); = float z = x+3 *x/2.0;

2. Evaluate multiplies and divides, from left-to-right
float z = x+3 *x/2.0;— float z = x+6.0/2.0; = float z = x+3.0;

3. Evaluate addition
float z = x+3.0; = float z=5.0;

4. Perform initialization with assignment
Now, z =5.0.

How do | insert parentheses to get z =4.07?
float z = (x+3 *x)/(y-4);

24

Function prototypes

* Functions also must be declared before use
* Declaration called function prototype

* Function prototypes:
int factorial (int); or int factorial (int n);

* Prototypes for many common functions in header files for
C Standard Library

25

Function prototypes

* General form:
return_type function_name (argl,arg2,...);

* Arguments: local variables, values passed from caller

* Return value: single value returned to caller when function
exits

* void — signifies no return value/arguments
int rand(void);

26

The main () function

* main () : entry point for C program

* Simplest version: no inputs, outputs O when successful,
and nonzero to signal some error
int main(void);

* Two-argument form ofmain () : access command-line
arguments
int main(int argc, char * * argv);

* More on the char *xargv notation later...

27

Function definitions

Function declaration

{

declare variables;
program statements;

}

* Must match prototype (if there is one)

* variable names don’t have to match
* no semicolon at end

* Curly braces define a block — region of code
* Variables declared in a block exist only in that block

* Variable declarations before any other statements

28

Our main () function

/% The main() function */
int main (void) /% entry point ¥
{

/% write. message to console ¥
puts ("hello, UNMLA students");

return 0; /% exit (0 => success) ¥

}

* puts () : output text to console window (stdout) and end
the line

* String literal: written surrounded by double quotes

* return 0;
exits the function, returning value 0 to caller

29

Alternative main () function

* Alternatively, store the string in a variable first:
int main (void) /% entry point ¥

{

const char msg[] = "hello, UNMLA students";

/% write message to console ¥
puts (msg);
* const keyword: qualifies variable as constant
* char: data type representing a single character; written in
quotes: 'a’, '3’ 'n’
* const char msg[]:aconstant array of characters

30

More about strings

* Strings stored as character array
* Null-terminated (last character in array is 1 0 null)
* Not written explicitly in string literals
* Special characters specified using | (escape character):

* |\l —backslash, | — apostrophe, | ” — quotation mark

* Ib, \t, I, | n — backspace, tab, carriage return, linefeed

* \ooo, | xhh — octal and hexadecimal ASCII character
codes, e.g. \x41—"A" 1060 —"0"

31

Console 1/0

* stdout, stdin: console output and input streams

* puts (string): print string to stdout

* putchar (char): print character to stdout

* char = getchar ():return character from stdin

* string = gets (string):read line from stdin into
string

* Many others

32

Preprocessor macros

* Preprocessor macros begin with # character
#include <stdio.h>

* #define msg "hello, UNMLA students"
defines msgas “hello, UNMLA students” throughout

source file
* many constants specified this way

33

Defining expression macros

* #define can take arguments and be treated like a function
#define add3(x,y,z) ((x)+(y)+(z))

* parentheses ensure order of operations

* compiler performs inline replacement; not suitable for
recursion

34

Conditional preprocessor macros

¢ #if , #ifdef, #ifndef, #else, #elif , #endif
conditional preprocessor macros, can control which lines
are compiled
* evaluated before code itself is compiled, so conditions must
be preprocessor defines or literals
* the gcc option -Dname=value sets a preprocessor define
that can be used
* Used in header files to ensure declarations happen only
once

35

Conditional preprocessor macros

* #pragma
preprocessor directive
* #error, #warning
trigger a custom compiler error/warning
* #undef msg
remove the definition of msg at compile time

36

Compiling our code

After we save our code, we run gcc:

prompt% gcc —-g -00 -Wall hello.c -o
hello.exe

Assuming that we have made no errors, our compiling is
complete.

37

Running our code

Or, in gdb,
prompt% gdb hello.exe

Reading symbols from hello.exe...done.
(gdb) run

Starting program: hello.exe

hello, UNMLA students

Program exited normally.

(gdb) quit
prompt%

38

Summary

Topics covered:
* How to edit, compile, and debug C programs

* C programming fundamentals:
* comments
* preprocessor macros, including #include
* the main () function
* declaring and initializing variables, scope
* using puts () —calling a function and passing an argument
* returning from a function

39

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
IAP 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

